
N 8 9 - 1 5 6 0 9

OBJECT-ORIENTED FAULT TFIEE EVALUATION PROGRAM FOR
Q UANTITAT~VE ANALYSES

F. A. Patterson-Hine and B. V. Koen
NASA Ames Research Center

MS 244-4
Moffett Field, CA 94035

The University of Texas at Austin
Dept. of Mechanical Engineering

ETC 5.1 34
Austin, TX 78712

Abstract

Object-oriented programming can be combined with fault tree techniques
to give a significantly improved environment for evaluating the safety and
reliability of large complex systems foir space missions. Deep knowledge about
system components and interactions, available from reliability studies and other
sources, can be described using objects that make up a knowledge base. This
knowledge base can be interrogated throughout the design process, during
system testing, and during operation, and can be easily modified to reflect
design changes in order to maintain a, consistent information source.

An object-oriented environment for reliability assessment has been
developed on a Texas Instruments (TI) Explorer LISP workstation. The
program, which directly evaluates system fault trees, utilizes the object-oriented
extension to LISP called Flavors that iis available on the Explorer. The object
representation of a fault tree facilitate!; the storage and retrieval of information
associated with each event in the tree, including tree structural information and
intermediate results obtained during the tree reduction process. Reliability data
associated with each basic event are stored in the fault tree objects. The object-
oriented environment on the Explorer also includes a graphical tree editor
which was modified to display and edit the fault trees.

The evaluation of the fault tree is performed using a combination of
standard fault tree reduction procedures. A bottom-up procedure is used for
subtrees that do not contain repeated events, and a top-down, recursive
procedure is used to evaluate subtrees that do contain repeated events. The
tree is dynamically modularized according to the event which is being
evaluated at the time. The locations (of repeated events are propagated up the
tree and stored in each event object. This information is used to determine
which evaluation procedure is required for each event, and intermediate results
are stored as they are calculated. Unlike most conventional fault tree
evaluation codes which calculate the probability of occurrence of the top event
only, this program produces results for every event in the fault tree. The object-
oriented approach to fault tree reduction greatly increases the efficiency of the
evaluation algorithms.

477

Introduction

Fault trees are a widely accepted method for modeling complex systems
in reliability analyses. A fault tree is a graphical representation of the logical
interrelationships among the components of a system [l]. The functional
relationships are established in a top-down manner and are represented by
logic gates such as AND- and OR-gates. A probability of occurrence is
assigned to each base event denoting the failure probability of the components
in the system. A fault tree can be evaluated quantitatively to determine the
probability of occurrence of the top event in the tree.

The most popular method for quantifying fault trees uses the minimal cut
sets of the tree and the component failure information. Minimal cut sets are sets
of basic events in which each component in the set must fail for the top event to
occur [2]. Algorithms which find the minimal cut sets of a fault tree are better
suited to conventional programming languages than are algorithms which
directly evaluate the fault tree quantitatively. Quantification of minimal cut sets
produces an approximate result in most practical applications, however, since
larger trees require the use of truncation techniques to restrict the number of cut
sets which are generated.

Object-oriented programming languages enable algorithms which
directly evaluate fault trees to be implemented easily and efficiently. These
languages provide powerful features which are not available in conventional
programming languages. The basic entity in object-oriented programming is
the object, which is an abstract data type [3]. Objects are defined in terms of
classes that combine the behavior and state of the objects. Classes describe
one or more similar objects, and a particular object is called an instance of the
class. All data and actions associated with an object are contained in the
object's instance variables and methods. The instance variables represent a
private memory for the object, and the procedures, or methods, associated with
the object are the only legitimate operators for the data stored in the instance
variables. Methods are invoked by sending a message to an object, which
replaces conventional function calls. A unique feature called inheritance
allows pieces of code to be shared by several objects. This eliminates
unnecessary redundancy in programming and data storage. Instance variables
can be accessed via the inheritance hierarchy, so changes that affect the state
of all objects of a particular class can be made by updating the class definitions,
thus changing at once the information inherited by multiple objects. Inheritance
is not provided by any conventional language, and is quite useful in the fault
tree a p pl icat io n .

The performance of existing codes that evaluate fault trees are limited by
the data structures that are available in conventional programming languages.
Object-oriented programming provides the flexibility that is needed in defining
structures to represent logic gates and basic event data, and the complex
interrelationships which exist among them. One of the most serious problems
with previous direct evaluation codes is the loss of information about the

478

system, both pre-defined structural relationships and intermediate results during
tree simplification. The application of object-oriented concepts to fault tree
analysis results in a clear and concise representation of the tree and provides a
powerful mechanism for the storage, retrieval, and evaluation of system
information.

Fault Tree Object Definitions

This application has been developed on a Texas Instruments Explorer
LISP workstation using the object-oriented extension to LISP called Flavors [4].
Logic gates and basic events share many characteristics which can be
described by a general flavor, called TREE. Instance variables that contain
information common to both basic events, called nodes, and logic gates are
defined in this flavor. All gates and basic events have both a name and at least
one parent, so two instance variables, :name and :parent, hold this information.
Since the top event of the fault tree does not have a parent, the value of its
:parent variable is nil. A variable called :unavailability stores probability data for
basic events. Results from the simplification of logic gates is stored in
:unavailability for gates. Another variable, :dependent, indicates whether
repeated events are located under a particular gate. Basic events are terminal
leaves, making the value of the :dependent variable nil for all basic events. The
TREE flavor is specialized into two other flavors, GATE and NODE, which
contain information particular to logic gates and basic events, repectively.

The GATE flavor includes instance variables that describe more
specifically the state of logic gates. All gates are non-terminal leaves, and the
names of their children are stored in a variable called :children. A second
variable, :dependent-eval, indicates whether or not the gate must be evaluated
using the top-down algorithm capable of handling repeated events. The NODE
flavor inherits the :unavailability variable from the TREE flavor, but may change
the value of :unavailability for all nodes by using a default specification. The
:unavailability of each node can also, of course, be changed individually.
Specific logic gate types, such as AND- and OR-gates, are described by flavors
that are specializations of the GATE flavor. These flavors are necessary for
defining methods that apply the specific reduction equations required by each
type of gate.

Several other instance variables are defined in these flavors to enable
the fault tree to be displayed graphically. The GATE flavor stores a special
traversal of all events below and including the particular gate in a variable
called :display-trav to be used by the graphical tree editor. NODES, AND-
GATES, and OR-GATES include a variable called :flavor-type that contains a
description of the defining flavor that is displayed by the tree editor with other
information about the events. The TREE flavor stores the name of each object
in :name, which is also displayed. The TREE flavor has a component flavor,
GWlN:BASIC-GRAPHICS-MIXIN, that furnishes all the information needed for
the creation of the graphics objects that describe the fault tree. The tree editor

479

will be described in the next sections along with the tree reduction algorithms.
Figure 1 contains the actual fault tree flavor definitions written in LISP.

(DEFFLAVOR TREE
((parent nil)
(name nil)
(dependent n i I))

(gwi n : basic-graphics-mixi n)
:settable-instance-variables)

(DEFFLAVOR GATE
((children nil)
(unavailability nil)
(dependent-eval nil)
(display-trav nil))

(tree)
:setta ble- i n st ance-va ri ables)

(DEFFLAVOR AND-GATE
((f Iavor-type 'AN D-GATE))
(gate)

:settable-instance-variables)

(DEFFLAVOR OR-GATE
((flavor-type 'OR-GATE))
(gate)

:setta b le- i n st ance-va ri a bles)

(DEFFLAVOR NODE
((f lavo r-type 'NODE)

(tree)
:se tta ble- i n st ance-va ri able s)

(unavailability *defau It-unavailabi lity*))

Figure 1. Fault tree flavor definitions.

Fault Tree Reduction Techniques

The evaluation of the fault tree is performed using a combination of
standard fault tree reduction procedures. A bottom-up procedure is used for
subtrees that do not contain repeated events, and a top-down, recursive
procedure is used to evaluate subtrees that do contain repeated events. The
tree is dynamically modularized according to the event which is being
evaluated at the time. The locations of repeated events are propagated up the
tree and stored in each event object. This information is used to determine

480

which evaluation procedure is required for each event, and intermediate results
are stored as they are calculated. These algorithms are described in detail in
[5]. The object-oriented approach to fault tree reduction greatly increases the
efficiency of the evaluation algorithms.

Graphical Fault Tree Editor

A general purpose graphical tree editor program that is available in
Explorer System 3.0 was adapted to display the fault tree objects. The
graphical display of the fault tree enables a visual check of the input tree
structure. The user-interface, which includes menu-driven tree editing and pop-
up displays of nodal data, allows the user to quickly and easily check the
information stored in each fault tree object. Display of the tree after evaluation
incorporates the results of tree reduction and modularization information.
Probability values can also be edited with a series of menu-driven operations,
and the modified tree can be re-evaluated.

The tree editor displays each fault tree object as a rectangle, with the
name of the object in the center of the rectangle. GATE objects are shaded, and
NODE objects are transparent. The interconnections of the tree objects are
shown as lines connecting each node to its parent(s) and children. Figure 2 is a
reproduction of a tree editor display as it appears on the Explorer screen.
Features such as zoom in, zoom out, move left, and move right for tree
positioning are accessed from a menu at the top of the display.

Object information other than the name of the object can be displayed by
clicking on the specific object of interest. A pop-up window appears that
contains the name of each instance variable associated with the object, and its
value. Instance variables that are used by the tree editor only are not displayed.
Figure 3 is a reproduction of the display after a GATE object is selected for the
additional information. The pop-up window displays the GATE'S flavor type,
parent(s), children, unavailability, dependent list, and its dependent-eval list.
The information displayed for a NODE includes flavor type, parent(s), and
unavailability.

The probability value of any node in the fault tree can be changed in the
graphical tree editor. By clicking on an object in a specified manner, a pop-up
window appears that asks for a new probability value for that object. The value
entered is then stored in the :unavailability variable for that object. In this way,
errors in the object descriptions can be corrected before the tree is evaluated
without having to exit the program and edit the data file. The tree may then be
evaluated as usual. Modifications to tree objects are not reflected in the input
file; however, they are documented in the output file each time the tree is
evaluated.

481

MAIN MENU
New Tree

Edit
Redraw

Edit Parameters
Exit

I I I
~.;.:.:QATE$''' 11 NODE7 11 NODE10 I[

I I

. ,... , , , , ,
....,. ,

I

DISPLAY SCREEN OPTION!
Move Up

Move Down
Move Left

Move Right
Zoom In

Zoom Out
Fill Window
Recenter

I NODE8 I NODE9 I

Figure 2 Display of a simple fault tree on the Explorer.

482

MAIN MENU
New Tree

Edit
Redraw

Edit Parameters
Exit

LOGIC GATE DATA:

logic gate type:

unavailability:
NIL
parent(s):

DISPLAY SCREEN OPTION:
Move Up

Move Down
Move Left

Move Right
Zoom In

Zoom Out
Fill Window

I
I

Bottom

NODE8 I NODE9 I

1
L
ODE9

Figure 3 Display of GATE data.

483

An interesting use of this editing capability is the variation of probability
values in order to determine the effects on the probability of occurrence of the
top event. For example, a tree can be evaluated and displayed after evaluation.
One or more probability values for any tree object, GATE or NODE, can be
changed and the tree is then re-evaluated. When such changes are made, the
results of the previous calculation are retained for branches that are not affected
by the changes. Therefore, calculations are not repeated unnecessarily, and
the re-evaluation is completed in as few calculations as possible. None of the
most widely used fault tree codes have such editing capabilities.

Conclusions

Object-oriented fault tree techniques provide an improved and flexible
environment for reliability analysis. System components are represented by
objects which can be organized into a persistent knowledge base of reliability
information, improving data consistency. The inheritance heirarchy inherent in
the object-oriented environment allows data to be entered either by class for
groups of similar components or individually for specific components. Fault
trees can be displayed graphically, allowing tree structure to be checked
visually. Reliability data for NODES can also be checked in the tree editor and
updated immediately if desired. The tree reduction algorithms perform a direct
evaluation of the fault tree and store a probability of occurrence for each event
in the event's object. These algorithms are more efficient than previous
algorithms implemented in conventional programming languages. The object-
oriented environment also enables parameter variation studies to be performed
on-line in conjunction with the tree editor.

The flexibility of this environment and the improvements already
apparent in the fault tree application suggest that object-oriented fault trees may
be appropriate for improving fault detection and diagnosis in complex systems.
This topic is currently being explored to provide fault management in the large
knowledge-based systems required by space applications.

Acknowledgements

This research was performed while FAPH was a graduate student at the
University of Texas at Austin and was sponsored by the NASA Graduate
Student Researchers Program, ZONTA International, and NSF grant DMC-
861 5432.

4 8 4

Ref e ren ces :

1.

2.

3.

4.
5.

Fussell, J. B., "A Formal Methodology for Fault Tree Construction,"
Nuclear Science and Engineeering, vol. 52, p. 421 -432, 1973.
Vesely, W. E., Goldberg, F. F., Roberts, N. H., and Haasl, D. F., Fault Tree

Stefik, M., and Bobrow, D. G., "Object-Oriented Programming: Themes
and Variations," The A/ Magazine, vol. VI, no. 4, p. 40-62, Winter 1985.
Explorer LisD Reference, Texas Instruments, Incorporated, 1987.
Patterson-Hine, F. A., Ob iect-Oriented Proarammina Applied to the
Evaluation of Reliabilitv Fault Trees, Ph.D. Dissertation, The University of
Texas at Austin, May 1988.

J-landboo k, NUREG-0492, 1981.

485

